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Readings: 
• Spin book: Chapter 8, pages 178-181 (Search Algorithms)
• Course notes on CTL 

CISC422/853: Formal Methods 
in Software Engineering: 

Computer-Aided Verification
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Outline

How to check for 
• assertion violations & deadlock

° Basic DFS 

• safety properties
° expressed as FSAs (in Bogor)
° expressed as Never Claims (in Spin)
° expressed as LTL properties (in Spin)

• liveness properties
° progress labels (in Spin)
° expressed as Never Claims (in Spin)
° expressed as LTL properties (in Spin)
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Preliminaries

Let system S be given by n concurrent threads
T1, …, Tn

Threads Ti execute asynchronously in S
So, AS, the FSA representing S, is obtained by 
building the asynchronous composition of the ATi, the 
FSA representing Ti, that is, 

AS  = AT1 || … || ATn
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checkAssertions(AS) {
seen := {s0}
stack := [s0]
DFS(s0)

}

checkAssertions(AS) {
seen := {s0}
stack := [s0]
DFS(s0)

}

DFS(s) {
ws := enabled(s)
for all a in ws {

if a=assert(p) && !eval(p,s) then
print(“violation”, s+stack)

s’ := execute(a, s)
if s’ not in seen {

seen := seen + {s’}
push(s’, stack)
DFS(s’)
pop(stack)

}}}                 

DFS(s) {
ws := enabled(s)
for all a in ws {

if a=assert(p) && !eval(p,s) then
print(“violation”, s+stack)

s’ := execute(a, s)
if s’ not in seen {

seen := seen + {s’}
push(s’, stack)
DFS(s’)
pop(stack)

}}}                 

Check Safety With 
Assertions

set of states already exploredset of states already explored

• get the transitions out of s (possibly 
“on-the-fly”)
• s records state of each thread Ti,
i.e., s = (sT1, …, sTn)

• get the transitions out of s (possibly 
“on-the-fly”)
• s records state of each thread Ti,
i.e., s = (sT1, …, sTn)

pick one of the transitions to explorepick one of the transitions to explore

calculate the successor state calculate the successor state 

if successor state  has been seen before, 
ignore it

if successor state  has been seen before, 
ignore it

Source: 842@KSU

check for assertion violation, if necessarycheck for assertion violation, if necessary

states on current pathstates on current path

explore successor stateexplore successor state

Check for deadlock is similar!
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Check Safety With FSAs: Example

Let’s look at an example system 
[Phil1 || Phil2]:

boolean f1, f2; 
thread Phil1() {

loc pickup1: when !f1 do
{f1 := true;}

goto pickup2;
loc pickup2: when !f2 do

{f2 := true;}
goto eating;

loc eating:   do {}
goto drop2;

loc drop2:    do {f2 := false;}
goto drop1;

loc drop1:    do {f1 := false;}
goto pickup1;

}  

boolean f1, f2; 
thread Phil1() {

loc pickup1: when !f1 do
{f1 := true;}

goto pickup2;
loc pickup2: when !f2 do

{f2 := true;}
goto eating;

loc eating:   do {}
goto drop2;

loc drop2:    do {f2 := false;}
goto drop1;

loc drop1:    do {f1 := false;}
goto pickup1;

}  
Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 2 6

Check Safety With FSAs: Example 
(Cont’d)

... and an example property P1:
“Phil1 must pickup Fork1 before dropping it”

¬P1 as reg. exp.: [- P1.pickup1, P1.drop1]*; P1.drop1; .* 

extension Property for ... 
{expdef boolean transform(string, string);}

function notP1() {
loc init: 

when Property.transform(“Phil1”, ”drop1”) 
do {} goto bad;

when Property.transform(“Phil1”, ”pickup1”) 
do {} goto good;

loc good do {} goto good;
loc bad do {} goto bad;

extension Property for ... 
{expdef boolean transform(string, string);}

function notP1() {
loc init: 

when Property.transform(“Phil1”, ”drop1”) 
do {} goto bad;

when Property.transform(“Phil1”, ”pickup1”) 
do {} goto good;

loc good do {} goto good;
loc bad do {} goto bad;

¬P1 as a FSA: ¬P1 as a BIR program:

Source: 842@KSU
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Check Safety With FSAs: Example 
(Cont’d)

To check whether [Phil1 || Phil2] satisfies P1, we take the 
synchronous composition of [Phil1 || Phil2] and ¬P1:

Every word/execution ending in (*, *, 2) is 
• in L([Phil1||Phil2] ⊗ ¬P1)
• a violating execution!

[Phil1||Phil2] ⊗ ¬P1

Here:
• no violating executions
• system satisfies P1!

Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 2 8

Check Safety With FSAs: Example 
(Cont’d)

Here’s another property P2

“Phil2 must pickup Fork1 before Phil1 can drop it”
¬P2 as regular expression:

[- P2.pickup1, P1.drop1]*; P1.drop1; .*
¬P2 as FSA:

[- P2.pickup1, P1.drop1]

P2.pickup1

Source: 842@KSU
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Check Safety With FSAs: 
Example (Cont’d)

[Phil1 || Phil2] ⊗ ¬P2

Every word/execution ending in (*, *, 2) is 
• in L([Phil1||Phil2] ⊗ ¬P2)
• a violating execution 

Here:
• lots of violating executions
• system does not satisfy P2

Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 2 10

Check Safety With FSAs

Let AS = AT1
|| ... || ATn

Let AP be FSA expressing safety property P
3 Steps:
1. build FSA A¬P for negation of P

° A¬P must be total (use stutter extension)
2. build AS⊗A¬P, synchronous product of AS and A¬P

3. do basic DFS on AS⊗A¬P

° if a transition puts A¬P into final state, then
qViolation! Print contents of DFS stack as error trace
qL(AS⊗A¬P) not empty

° if A¬P never reaches a final state, then
qno violation! S satisfies P
qL(AS⊗A¬P) empty

can be done at 
the same time
(“on-the-fly”

model
checking, e.g.,
Spin, Bogor)
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DFS((s, p)) {
ws := enabled(s)
for each a in ws {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if p’ in F¬P then

print(“violation”, (s’,p’)+stack)
if (s’,p’) not in seen then {

seen := seen + {(s’,p’)}
push((s’,p’), stack)
DFS((s’,p’))
pop(stack)

}
}

}

DFS((s, p)) {
ws := enabled(s)
for each a in ws {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if p’ in F¬P then

print(“violation”, (s’,p’)+stack)
if (s’,p’) not in seen then {

seen := seen + {(s’,p’)}
push((s’,p’), stack)
DFS((s’,p’))
pop(stack)

}
}

}

Check Safety With 
FSAs (Cont’d)

• Let AS be (SS, s0, S, LS, δS, FS)  
• Let A ¬P be 

(S¬P, s0,¬P, L¬P, δ¬P, F¬P) 
where A¬P is deterministic

checkSafety(AS, A¬P) {
seen := {(s0,S, s0,¬P)}
stack := [(s0,S, s0,¬P)]
DFS((s0,S, s0,¬P))

}

checkSafety(AS, A¬P) {
seen := {(s0,S, s0,¬P)}
stack := [(s0,S, s0,¬P)]
DFS((s0,S, s0,¬P))

}

new state component 
for A¬P

update state of A¬P

A¬P in final state?
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Check Safety With Never Claims 

In Spin, safety properties can be expressed using 
Never Claims
Never Claims representing safety properties are FSAs
Let NC¬P be NC expressing negation of safety 
property P
Check as before, except don’t need to build negation
2 Steps:
1. build AS⊗NC¬P, synchronous product of AS and NC¬P

2. do basic DFS on AS⊗NC¬P

° final state of NC reached when NC “fully matched”
° S violates P iff L(AS⊗NC¬P) not empty
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DFS((s, p)) {
ws := enabled(s)
for each a in ws {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if p’ in F¬P then

print(“violation”, (s’,p’)+stack)
if (s’,p’) not in seen then {

seen := seen + {(s’,p’)}
push((s’,p’), stack)
DFS((s’,p’))
pop(stack)}

}}

DFS((s, p)) {
ws := enabled(s)
for each a in ws {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if p’ in F¬P then

print(“violation”, (s’,p’)+stack)
if (s’,p’) not in seen then {

seen := seen + {(s’,p’)}
push((s’,p’), stack)
DFS((s’,p’))
pop(stack)}

}}

Check Safety With Never Claims 
(Cont’d)

• Let AS be (SS, s0, S, LS, δS, FS)  
• Let NC¬P be (S¬P, s0,¬P, L¬P, δ¬P, F¬P) where NC¬P is 

deterministic

checkSafety(AS, NC¬P}) {
seen := {(s0,S, s0,¬P)}
stack := [(s0,S, s0,¬P)]
DFS((s 0,S, s0,¬P))

}

checkSafety(AS, NC¬P}) {
seen := {(s0,S, s0,¬P)}
stack := [(s0,S, s0,¬P)]
DFS((s 0,S, s0,¬P))

}

NC¬P fully matched?
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Check Safety With LTL

In Spin, safety properties can also be expressed as 
LTL properties
Let P be safety property expressed in LTL
Checking proceeds as before
3 Steps:
1. build FSA A¬P for negation of P

° A¬P must be total (use stutter extension)
2. build AS⊗A¬P, synchronous product of AS and A¬P

3. do basic DFS on AS⊗A¬P

° as before
° S violates P iff L(AS⊗A¬P) not empty
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Check Safety: In A Nutshell

Let S be system with threads T1, …, Tn

Let P be safety property
Steps:
1. build FSA A¬P for negation of P
2. build AS⊗A¬P, synchronous product of AS and 

A¬P   where AS = AT1 || … || ATn, asynchronous 
composition of the Ti

3. do basic DFS on AS⊗A¬P

Complexity:
• O(R) where R is # of reachable states in 

AS⊗A¬P

• Spin and Bogor do 
both steps at the same 
time (“on-the-fly”)
• SMV carries steps 
out sequentially (not 
“on-the-fly”)

CISC422/853, Winter 2009 Model Checking, Part 2 16

Check Liveness With Never Claims

Remember:
• NC expresses violation of property
• NC  representing liveness property    

=  Buechi Automaton   
=  FSA + ω-acceptance

Let 
• AS be Buechi automaton representing the system S
• NC¬P express violation of liveness property P
• t be execution of AS

Execution t violates P iff
• “some ‘good thing’ never happens along t”

iff t in Lω(NC¬P)
iff t causes NC¬P into an ‘acceptance cycle’
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Check Liveness With Never Claims 
(Cont’d)

S satisfies P
iff Lω(AS⊗NC¬P) is empty 
iff AS⊗NC¬P has no accepting execution
iff AS⊗NC¬P has no execution that ends in an accepting cycle

To check if S satisfies P
1. build AS⊗NC¬P

2. check if AS⊗NC¬P  has acceptance cycle
° How to do that?
° Basic DFS or BFS is not enough…

1

3

4

5

2
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Check Liveness With Never Claims 
(Cont’d)

Solution 1:
• Compute strongly connected components (SCC) in AS⊗NC¬P

(Tarjan’s algorithm)
• AS⊗NC¬P has acceptance cycle iff

° AS⊗NC¬P has SCC such that 
q SCC reachable from initial state, and 
q SCC contains at least one accepting state

Solution 2: (easier)
• Check if AS⊗NC¬P has at least one state s s.t.

(1) s is accepting
(2) s reachable from initial state
(3) s is reachable from itself

• Implementation: Nested DFS
° First DFS to find s s.t. (1) and (2)
° Then, nested DFS to check (3)

1

3

4

5

2
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DFS((s, p)) {
ws1 := enabled(s)
for each a in ws {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if (s’,p’) not in seen then {

seen1 := seen1 + {(s’,p’)}
push((s’,p’), stack1)
DFS((s’,p’))

if p’ in F¬P then {
seen2 = {(s’,p’)}
stack2 = [(s’,p’)]
NDFS((s’,p’), (s’,p’))}

pop(stack1)
}}}

DFS((s, p)) {
ws1 := enabled(s)
for each a in ws {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if (s’,p’) not in seen then {

seen1 := seen1 + {(s’,p’)}
push((s’,p’), stack1)
DFS((s’,p’))

if p’ in F¬P then {
seen2 = {(s’,p’)}
stack2 = [(s’,p’)]
NDFS((s’,p’), (s’,p’))}

pop(stack1)
}}}

Check Liveness With Never Claims 
(Cont’d)

start nested DFS if p’
is an accepting state of NC¬P

checkLiveness(AS, NC¬P}) {
seen1 := {(s0,S, s0,¬P)}
stack1 := [(s0,S, s0,¬P)]
DFS((s 0,S, s0,¬P))

}

checkLiveness(AS, NC¬P}) {
seen1 := {(s0,S, s0,¬P)}
stack1 := [(s0,S, s0,¬P)]
DFS((s 0,S, s0,¬P))

}

• Let AS be (SS, s0, S, LS, δS, FS)  
• Let NC¬P be 

(S¬P, s0,¬P, L¬P, δ¬P, F¬P) 
where NC¬P is deterministic

is p’ accepting state?
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NDFS((s, p), start) {
ws2 := enabled(s)
for each a in ws2 {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if (s’,p’) = start then

print(“violation”, 
stack1+stack2)

if (s’,p’) not in seen2 then {
seen2 := seen2 + {(s’,p’)}
push((s’,p’), stack2)
NDFS((s’,p’), start)
pop(stack2)}

}}

NDFS((s, p), start) {
ws2 := enabled(s)
for each a in ws2 {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if (s’,p’) = start then

print(“violation”, 
stack1+stack2)

if (s’,p’) not in seen2 then {
seen2 := seen2 + {(s’,p’)}
push((s’,p’), stack2)
NDFS((s’,p’), start)
pop(stack2)}

}}

Check Liveness With Never Claims 
(Cont’d)

DFS((s, p)) {
ws1 := enabled(s)
for each a in ws {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if (s’,p’) not in seen then {

seen1 := seen1 + {(s’,p’)}
push((s’,p’), stack1)
DFS((s’,p’))

if p’ in F¬P then {
seen2 = {(s’,p’)}
stack2 = [(s’,p’)]
NDFS((s’,p’), (s’,p’)) }

pop(stack1)}
}}

DFS((s, p)) {
ws1 := enabled(s)
for each a in ws {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if (s’,p’) not in seen then {

seen1 := seen1 + {(s’,p’)}
push((s’,p’), stack1)
DFS((s’,p’))

if p’ in F¬P then {
seen2 = {(s’,p’)}
stack2 = [(s’,p’)]
NDFS((s’,p’), (s’,p’)) }

pop(stack1)}
}}

acceptance cycle found!
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Check Liveness With Never Claims 
(Cont’d)

Let NC¬P be NC expressing negation of liveness
property P
2 Steps:
1. build AS⊗NC¬P, synchronous product of AS and NC¬P

2. do nested DFS on AS⊗NC¬P to search for acceptance cycle
° S violates P iff
q AS⊗NC¬P  has acceptance cycle
q Lω(AS⊗NC¬P) not empty
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Check Liveness With LTL

Let P be an LTL formula expressing a liveness property
Build NC¬P representing negation of P
Then, as before
3 Steps:
1. build NC¬P, never claim representing ¬P
2. build AS⊗NC¬P, synchronous product of AS and NC¬P

3. do nested DFS on AS⊗NC¬P to search for acceptance cycle
° S violates P iff
qAS⊗NC¬P  has acceptance cycle
qLω(AS⊗NC¬P) not empty
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Check Liveness With Progress Labels

Need to find non-progress cycles
Remember: In Spin,
• whether or not the system makes progress 

in a given state s is observable
• np_ false in s iff at least one process is at 

progress label in s

Let Progress be “every state along 
every path is always eventually followed 
by a progress state”
Idea: Use np_ to express Progress and 
¬Progress as LTL formulas
Which?

progress state

non-progress cycle
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Check Liveness With Progress Labels 
(Cont’d)

Progress = “every state along every path is 
always eventually followed by a progress state”
¬Progress = “at least one state along at least 
one path is never followed by a progress state”
In LTL using np_:
• Progress = []<> ¬np_
• ¬Progress = <>[]np_

As Never Claim NC¬Progress:

progress state

non-progress cycle

np_

.
NC¬Progress

np_
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Check Liveness With Progress Labels 
(Cont’d)

3 Steps:
1. build NC¬Progress, never claim representing non-

progress
2. build AS⊗NC¬Progress, synchronous product of AS

and NC¬Progress

3. do nested DFS on AS⊗NC¬Progress to search for 
non-progress cycle
° S violates Progress iff
qAS⊗NC¬P  has acceptance cycle
qLω(AS⊗NC¬P) not empty
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Check Safety: In A Nutshell

Let S be system with threads T1, …, Tn

Let P be safety property

Steps:
1. build FSA A¬P for negation of P

2. build AS⊗A¬P, synchronous product of AS and 
A¬P   where AS = AT1 || … || ATn, asynchronous 
composition of the Ti

3. do basic DFS on AS⊗A¬P

Complexity:
• O(R) where R is # of reachable states in 

AS⊗A¬P

• Spin and Bogor do 
both steps at same 
time (“on-the-fly”)
• SMV carries steps 
out sequentially

liveness

Buechi Automaton

nested

O(2·R)

Liveness
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Spin

Promela code

Never 
Claim

proctype A() {

…

assert(x!=13);

}

proctype B() {

…

init {

run A();

run B();

}

never {…}

Spin

• if safety, basic DFS
• if liveness, nested DFS

• if safety, basic DFS
• if liveness, nested DFS

“Yes”

“No” + 
counter example

[] x==13 -> <>x!=13 progress: …

LTL Check progress
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The Language-Theoretic View
L(S) : system executions
L(P) : executions satisfying the property
Need to determine: L(S) ⊆ L(P)
Observation: A ⊆ B   iff (A Å ¬B) = ∅
So, to see if L(S) ⊆ L(P), we
• Step 1: take ¬P
• Step 2: see if L(S) Å L(¬P) is empty, that is, if there does not exist 

an execution t such that 
° S can do t, that is, t in L(S), and 
° t violates P, that is, t is in L(¬P)

• Step 2 will succeed precisely when S⊗¬P has no accepting 
executions

Theorem: Buechi Automata are closed under negation, 
union and intersection

L(¬P)

L(P) L(S)

L(S)
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Important Properties of Buechi-
Automata

Let A and B be Buechi-automata. Then,
¬A denotes the automaton that accepts precisely the 
words not accepted by A: 

Lω(¬A)  =  {w | w ∉ Lω(A)}
A∪B denotes the automaton that accepts precisely the 
words accepted by A or by B: 

Lω(A∪B)  =  Lω(A) ∪ Lω(B)
Similarly for AÅB

Buechi automata are closed under complement, union, 
and intersection.

Buechi automata are closed under complement, union, 
and intersection.
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Weak Fairness

Definition: An ω-run σ satisfies the weak fairness
requirement if it contains infinitely many transitions 
from every process (component automaton in the 
asynchronous product) that is enabled (has an 
executable action) infinitely long in σ

Definition: An ω-run σ satisfies the weak fairness
requirement if it contains infinitely many transitions 
from every process (component automaton in the 
asynchronous product) that is enabled (has an 
executable action) infinitely long in σ

Nested DFS can be adapted to enforce fairness (more 
details in Spin book Chapter 8)
Cost: linear increase in complexity (in # of processes)

So far, it’s possible that along a counter example a 
process stops moving although it is enabled

⇒ such counter examples are not very realistic (why?)
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Complexity and Optimization
Size of AS⊗A¬P
• R = # of reachable states in AS⊗A¬P

• R = RS· R¬P where 
° RS = # of reachable states in AS (typically: 109 … 1011)
° R¬P = # of reachable states in A¬P (typically: 1..4)

Size of AS
• RS =  RT1 · … · RTn ~    RT

n

Size of T
• RT = (# loc’s in T) · |dtype1| · … · |dtypem|    ~    (# loc’s in T) · |dtype|m

Thus,

• RS = ( (# loc’s in T) · |dtype|m )n
RS increases with
• # of processes n (exponentially)
• # of variables m
• size of data types
• size of process

RS increases with
• # of processes n (exponentially)
• # of variables m
• size of data types
• size of process
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Complexity and Optimization (Cont’d)
Size of AS⊗A¬P

• R = RS · R¬P = ( (# loc’s in T) · |dtype|m )n · R¬P 

Reduce R by

Reduce memory requirement by 
• compression

reducing
• # of processes n (exponentially)
• # of variables m 
• size of data type dtype
• size of process T
• size of specification P

reducing
• # of processes n (exponentially)
• # of variables m 
• size of data type dtype
• size of process T
• size of specification P

using
• partial order reduction
• statement merging
• abstraction

using
• partial order reduction
• statement merging
• abstraction

user

checker/user
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CTL Model Checking Algorithm (1)

So much for LTL model checking
Now, on to CTL model checking
Algorithm quite different, because CTL quite different 
from LTL
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Theorem: {¬, Ç, EX, AF, EU} is adequate for CTL 
Proof: ϕ1Æϕ2 ↔ ¬(¬ϕ1Ç¬ϕ2)

ϕ1→ϕ2 ↔ ¬ϕ1 Ç ϕ2

AXϕ ↔ ¬EX¬ϕ
AGϕ ↔ ¬EF¬ϕ
EGϕ ↔ ¬AF¬ϕ
EFϕ ↔ E[tt U ϕ]
A[ϕ1 U ϕ2] ↔ ¬(EG¬ϕ2 Ç E[¬ϕ2 U ¬ϕ1Æϕ2])

↔ AFϕ2 Æ ¬E[¬ϕ2 U ¬ϕ1Æϕ2]

CTL Model Checking Algorithm (2)

Definition: A set of connectives S is adequate for CTL iff
for every CTL formula ϕ, there exists an equivalent CTL 
formula T(ϕ) that only contains the connectives in S

Definition: A set of connectives S is adequate for CTL iff
for every CTL formula ϕ, there exists an equivalent CTL 
formula T(ϕ) that only contains the connectives in S
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CTL Model Checking Algorithm (3)

AGϕ ↔ ϕ Æ AX AGϕ
EGϕ ↔ ϕ Æ EX EGϕ
AFϕ ↔ ϕ Ç AX AFϕ
EFϕ ↔ ϕ Ç EX EFϕ
A[ϕ1 U ϕ2] ↔ ϕ2Ç (ϕ1Æ AX A[ϕ1 U ϕ2])
E[ϕ1 U ϕ2] ↔ ϕ2Ç (ϕ1Æ EX E[ϕ1 U ϕ2])

AGϕ ↔ ϕ Æ AX AGϕ
EGϕ ↔ ϕ Æ EX EGϕ
AFϕ ↔ ϕ Ç AX AFϕ
EFϕ ↔ ϕ Ç EX EFϕ
A[ϕ1 U ϕ2] ↔ ϕ2Ç (ϕ1Æ AX A[ϕ1 U ϕ2])
E[ϕ1 U ϕ2] ↔ ϕ2Ç (ϕ1Æ EX E[ϕ1 U ϕ2])

Recall
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CTL Model Checking Algorithm (4)
Input: FSM M=(S, s0, L, →, F) and CTL formula ϕ over AP
Output: “yes” if M²ϕ, “no” otherwise
Step 0: Let ϕ’ be T(ϕ) 
Step 1: For all subformulas ψ in ϕ’ (starting w/ smallest) 

including ϕ’, label all states s in M satisfying ψ: 
Sat(ψ) = CASE ψ OF 

p∈AP : label a state s w/ p if p true in s
¬ψ’ : Sat(ψ); label a state s w/ ¬ψ if s is not labeled w/ ψ
ψ1Çψ2: Sat(ψ1); Sat(ψ2); label a state s w/ ψ1Çψ2 if s labeled w/ ψ1 or ψ2
EX ψ’: Sat(ψ’); label a state s w/ EXψ’ if at least one successor of s is labeled w/ ψ’
AFψ’: Sat(ψ’); 

Repeat
label state s w/ AFψ’ if s labeled w/ ψ’ or all successors of s labeled w/ AFψ’

Until labeling doesn’t change anymore, i.e., a “fixed point” is reached
E[ψ1 U ψ2] : Sat(ψ1); Sat(ψ2); 

Repeat
label state s w/ E[ψ1U ψ2] if s labeled w/ ψ2 or (s labeled w/ ψ1

and at least one successor of s labeled w/ E[ψ1 U ψ2])
Until labeling doesn’t change anymore, i.e., a “fixed point” is reached
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CTL Model Checking Algorithm (5)
Input: FSM M=(S, s0, L, →, F) and CTL formula ϕ over AP
Output: “yes” if M²ϕ, “no” otherwise
Step 0: Let ϕ’ be T(ϕ) 
Step 1: For all subformulas ψ in ϕ’ (starting w/ smallest) including ϕ’, 

label all states s in M satisfying ψ: 
Step 2: If s0 labeled with ϕ, then output “yes”, else output “no”

M²AF p?
“yes”

Example:

Complexity: O((|S|+|→|) · |ϕ|)
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LTL Model Checking vs. CTL Model Checking

LTL model checking:
1) Check if L(M⊗A¬ϕ) = ∅ where A¬ϕ is 
non-deterministic Buechi Automaton 
representing ϕ

2) Check implemented by  
a) for safety: DFS or BFS 
b) for liveness: nested DFS

3) Note
a) execution sequences are linear

(non-branching) 
b) transition relation of M can be 

computed “on-the-fly”
c) In worst case, |A¬ϕ| exponential in |ϕ|

4) Complexity: O(|M|· 2|ϕ|), but |M| 
dominates 2|ϕ| in practice

5) Sample tools: Spin, Bogor, JPF

LTL model checking:
1) Check if L(M⊗A¬ϕ) = ∅ where A¬ϕ is 
non-deterministic Buechi Automaton 
representing ϕ

2) Check implemented by  
a) for safety: DFS or BFS 
b) for liveness: nested DFS

3) Note
a) execution sequences are linear

(non-branching) 
b) transition relation of M can be 

computed “on-the-fly”
c) In worst case, |A¬ϕ| exponential in |ϕ|

4) Complexity: O(|M|· 2|ϕ|), but |M| 
dominates 2|ϕ| in practice

5) Sample tools: Spin, Bogor, JPF

To check M ² ϕ

CTL model checking:
1) Check if (M,s)²ϕ for all s0∈M.S0

2) Check implemented by
a) express ϕ in terms of {¬, Ç, EX, AF, 

EU}
b) labeling algorithm Sat(ϕ) that is 

inductive over structure of ϕ and 
uses fixed point computation

3) Note
a) execution sequences are branching
b) transition relation of M cannot be 

computed on-the-fly
4) Complexity: O(|M|· |ϕ|)
5) Sample tools: SMV

CTL model checking:
1) Check if (M,s)²ϕ for all s0∈M.S0

2) Check implemented by
a) express ϕ in terms of {¬, Ç, EX, AF, 

EU}
b) labeling algorithm Sat(ϕ) that is 

inductive over structure of ϕ and 
uses fixed point computation

3) Note
a) execution sequences are branching
b) transition relation of M cannot be 

computed on-the-fly
4) Complexity: O(|M|· |ϕ|)
5) Sample tools: SMV
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Projects and Presentations

Schedule
Now: pick project
Till week of April 6: work on project
Week of April 6: presentations & summary papers

Presentations
20 mins
group members take turns

Summary papers
b/w 2-5 pages in ACM SIG Proceedings format 
to be distributed at presentation time


