CISC422/853: Formal Methods [

in Software Engineering: NEWBIES
Computer-Aided Verification @t

AND ANALFIT
CWITH LOTT
oF prCTURESY

s o

Topic 8: Model Checking, Part 2

Juergen Dingel
Feb, 2009

Readings:
+ Spin book: Chapter 8, pages 178-181 (Search Algorithms)
* Course notes on CTL

Outline

= How to check for

+ assertion violations & deadlock
° Basic DFS
+ safety properties
° expressed as FSAs (in Bogor)
° expressed as Never Claims (in Spin)
° expressed as LTL properties (in Spin)
* liveness properties
° progress labels (in Spin)
° expressed as Never Claims (in Spin)
° expressed as LTL properties (in Spin)

CISC422/853, Winter 2009 Model Checking, Part 2

Preliminaries

= Let system S be given by n concurrent threads
T, ..., T,
* Threads T, execute asynchronously in S

= So, Ag, the FSA representing S, is obtained by
building the asynchronous composition of the Ay, the
FSA representing T;, that is,

As = Al |l Ar,

CISC422/853, Winter 2009 Model Checking, Part 2 3

Check Safety With

checkAssertions(Ay) { Assertions
seen = {SO} ... set of states already explored I
stack 1= [Sp] ererrrriedbi s
DFS(s) | e states on current path ||

0.
} .. °getthe transitions out of s (possibly
--------- “on-the-fly”)
DFS(s) { e - s records state of each thread Ti,

ws := enabled(s)

i.e.,, s=(Sgy, -\ Syp)

for all a in ws {

............. pick one of the transitions to explore ||

if a=assert(p) && leval(p,s) then |
print(“violation”, s+stack)

check for assertion violation, if necessary l

& = execute(a, 5)

calculate the successor state |

|f s, nOt |n seen { ----------------------
seen := seen + {s'}

ignore it

if successor state has been seen before, I

push(s’, stack)

DFS(S) srererresssasassssasasssssmsasanspesssasassssssasasses

pop(stack)

explore successor state ||

13y Check for deadlock is similar! ‘

CISC422/853, Winter 2009 Model Checking, Part 2 Source: 842@KSU 4

Check Safety With FSAs: Example

boolean f1, f2;

Let’s look at an example system thread Phill() {

[Phil1 || Phil2]:

goto drop1l;

(dl'pl) (pLid1)

loc pickupl: when !fl do
{fl := true;}

(pLpl) goto pickup2;
/ loc pickup2: when !f2 do
(p2pl) (plp2) {f2 := true;}
goto eating;
(p2,p2) loc eating: do {}
goto drop2;

loc drop2: do {f2 := false;}

loc dropl: do {fl := false;}
goto pickupl;

Check Safety With FSAs: Example
(Cont’d)
... and an example property P:
“Phill must pickup Forkl1 before dropping it”
—P, as reg. exp.: [- P1.pickup1, P1.drop1]*; P1.drop1; .*

—-P, as a FSA: -P, as a BIR program:

extension Property for ...
{expdef boolean transform(string, string);}
function notP1() {

loc init:
—> D when Property.transform(“Phil1”, "drop1”)
Pl:dropl do {} goto bad;

when Property.transform(“Phil1”, "pickup1”)
do {} goto good;
D loc good do {} goto good;
loc bad do {} goto bad;

|[- Ppickupl P dropl] |

CISC422/853, Winter 2009 Model Checking, Part 2

Source: 842@KSU

5

CISC422/853, Winter 2009 Model Checking, Part 2

Source: 842@KSU 6

Check Safety With FSAs: Example
(Cont’d)

To check whether [Phil1 || Phil2] satisfies P,, we take the
synchronous composition of [Phil1 || Phil2] and —P;:

[Phil1||Phil2] ® —P,

pl.pl.1) (pl.pl.3)
Pl.pl 4

(p2,pl.3)

(pl.p2.3) (pl.p2.1)

(pl.e.3) (pl.e.l)

(2pl.3) (p2.p2.3) (pl.d2.3) (pl,d2.1)

(d1,p1.3) (pl,dl.3) (pl.dlL.1)

Here:

Every word/execution ending in (*, *, 2) is
* in L([Phil1]|Phil2] ® -P,)
» aviolating execution!

+ system satisfies P,!

* no violating executions

CISC422/853, Winter 2009 Model Checking, Part 2

Source: 842@KSU

7

Check Safety With FSAs: Example
(Cont’d)
Here’s another property P,
“Phil2 must pickup Forkl before Phill can drop it”
= —P, as regular expression:
[- P2.pickup1, P1.drop1]*; P1.drop1; .*
= -P, as FSA:

[- P2.pickup1, P1.drop1]

— .
Pl:dropl ’ D
P2.pickup1 =
]

Model Checking, Part 2

CISC422/853, Winter 2009 Source: 842@KSU 8

[PLpickupl P1:dropl |

Check Safety With FSAs:
Example (Cont'd)

7 o
-(’ Pludropl | =

'/.‘] ..
% :)

—!
3

P1_pickupl

Pl dropl P2.pickupl

[Phil1 || Phil2] © P,

Check Safety With FSAs

" LetAg=Ar Il ... Il Ar,
= Let A be FSA expressing safety property P
= 3 Steps:

1. build FSA A_; for negation of P

° A_p must be total (use stutter extension)
2. build Ag®A , synchronous product of Ag and A
3. do basic DFS on Ag®A can be done at

° if a transition puts A_ into final state, then the same time
~ Violation! Print contents of DFS stack as error trace > (“on-the-fly”
- L(As®A _p) not empty

model
° if A_p never reaches a final state, then checking, e.g

Every word/execution ending in (*, *, 2) is | | Here: ~ no violation! S satisfies P Spin Bc;gor)7

« in L([Phil1||Phil2] ® —P,) * lots of violating executions " L(As®A.p) empty /

» aviolating execution + system does not satisfy P,
CISC422/853, Winter 2009 Model Checking, Part 2 Source: 842@KSU 9 CISC422/853, Winter 2009 Model Checking, Part 2 10

H ’ tate component
Check Safety With | news : :
y’ for A p Check Safety With Never Claims
FSAs (Cont’'d)

DFS((s, p)) {

* LetAgbe (Sg, s s, Ls, s, Fs) ws := enabled(s)

* LetA_pbe for each ain ws {
(S_p So_ps Lp, 8p, Fpp) s’ := execute(a, S)

where A_,, is deterministic /P i=(@inlp) ?8 p(p.a) 1 p
/AT prin F_, then

checkSafety(Ag, A_p) { // / print(“violation”, (s’,p’)+stack)
seen = {(Sy s, So_p)} A /' if (,p’) not in seen then {
stack := [(So.s» So_p)] M seen := seen + {(s',p)}
DFS((sos. So.p) —1 ./ push((s’,p’), stack)
) DFS((s'.p"))
;S pop(stack)
‘ update state of A_, ‘ I,/ }
v }
‘ A . in final state? ‘ }

CISC422/853, Winter 2009 Model Checking, Part 2 11

= In Spin, safety properties can be expressed using
Never Claims

= Never Claims representing safety properties are FSAs

= Let NC_; be NC expressing negation of safety
property P

= Check as before, except don’t need to build negation

2 Steps:

1. build Aq®NC_g, synchronous product of Ag and NC_;
2. do basic DFS on A;®NC _;

° final state of NC reached when NC “fully matched”
° Sviolates P iff L(Aq®NC_p) not empty

CISC422/853, Winter 2009 Model Checking, Part 2 12

Check Safety With Never Claims
(Cont'd)
* LetAgbe (Sg, s s, Ls, O, Fs)

* LetNC_; be (S_p, sy_p, L_p, 0_p, F_p) where NC_; is
deterministic DFS((s, p) {

ws := enabled(s)
for each a in ws {
s’ := execute(a, S)

checkSafety(Ag, NC_p}) {

seen :={(Sy s, Sor_p)}

stack := [(Sy s, So_p)]) o (7 F .
DFS((Sg0, 50 o)) p:=(inl_p)?d_p(p.a) : p

} e if p’in F_, then

e print(“violation”, (s’,p’)+stack)
-7 if (s',p’) not in seen then {
seen := seen + {(s’,p)}
push((s’,p’), stack)
DFS((s',p)
pop(stack)}

-

| NC_, fully matched? [~

b3

CISC422/853, Winter 2009 Model Checking, Part 2 13

Check Safety With LTL

In Spin, safety properties can also be expressed as
LTL properties

Let P be safety property expressed in LTL

Checking proceeds as before

3 Steps:
1. build FSA A ; for negation of P
° A_p must be total (use stutter extension)
2. build Ag®A p, synchronous product of Ag and A
3. do basic DFS on Ag®A
° as before
° S violates P iff L(Ag®A_p) not empty

CISC422/853, Winter 2009 Model Checking, Part 2 14

Check Safety: In A Nutshell

Let S be system with threads T, ..., T,
Let P be safety property

Steps:
1. build FSA A _; for negation of P

2. build Ag®A _p, synchronous product of Ag and | * Spin and Bogor do
A_, where Ag = A || ... || A, @asynchronous both steps at the same
- WNEIEAs = Ary [- 1] Am, 8SY time (“on-the-fly”)
composition of the T,

* SMV carries steps
3. do basic DFS on Ag®A ; out sequentially (not
Complexity:

“on-the-fly”)
* O(R) where R is # of reachable states in
AsRA 5

CISC422/853, Winter 2009 Model Checking, Part 2 15

Check Liveness With Never Claims

= Remember:
* NC expresses violation of property
* NC representing liveness property
= Buechi Automaton
= FSA + w-acceptance
= Let
» Ag be Buechi automaton representing the system S
* NC_; express violation of liveness property P
+ tbe execution of Ag
= Execution t violates P iff
+ “some ‘good thing’ never happens along t”
iff tin L9(NC_p)

iff tcauses NC_; into an ‘acceptance cycle’
CISC422/853, Winter 2009 Model Checking, Part 2 16

Check Liveness With Never Claims
(Cont’'d)

= S satisfies P

iff LY(Ag®NC_p) is empty

iff As®NC_p has no accepting execution

iff As®NC_p has no execution that ends in an accepting cycle
= To check if S satisfies P

1. build Ag®NC_p

2. check if A;q®NC_p has acceptance cycle
° How to do that?
° Basic DFS or BFS is not enough...

CISC422/853, Winter 2009 Model Checking, Part 2

Check Liveness With Never Claims
(Cont’'d)
= Solution 1:
» Compute strongly connected components (SCC) in Aq®NC
(Tarjan’s algorithm)
+ As®NC_p has acceptance cycle iff
° Ag®NC_ghas SCC such that
- SCC reachable from initial state, and
- SCC contains at least one accepting state
= Solution 2: (easier)
» Check if A;q@NC_p has at least one state s s.t.
(1) s is accepting
(2) s reachable from initial state
(3) s is reachable from itself
* Implementation: Nested DFS
° First DFS to find s s.t. (1) and (2)
° Then, nested DFS to check (3)
CISC422/853, Winter 2009

Model Checking, Part 2

Check Liveness With Never Claims
(Cont’'d)
- LetAgbe (Sg, So s Ls, B, Fs)

L DFS((s, p)) {
wsl := enabled(s)
foreachainws {
s’ := execute(a, S)
p:=(ainL_p)?d p(p,a):p
if (s’,p") not in seen then {
seenl :=seenl + {(s’,p")}
push((s’,p’), stackl)
DFS((s',p"))
} yif pin F_p then {
T2 seen2 = {(s',p")}
stack2 = [(s’,p)]
_--¥ NDFS((s',p), (s,p))}

-

start nested DFS if p’ -1~ pop(stack1)
is an accepting state of NC_, 11}

- LetNC_p be

(S_p, So_ps Lp, O_p, F_p)
where NC_;, is deterministic

checkLiveness(Ag, NC_p}) {
seent :={(sys, Sor_p)}
stack1 := [(sy,5, So_p)]
DFS((s s So—p)) — |

-
-
-

‘ is p’ accepting state?

CISC422/853, Winter 2009 Model Checking, Part 2

19

Check Liveness With Never Claims
(Cont’'d)

DFS((s, p)) { » | NDFS((s, p), start) {
wsl := enabled(s) ws2 := enabled(s)
for each aiin ws { for each ain ws2 {
s’ := execute(a, S) s’ := execute(a, S)
p :=(ainL_p)?d_p(p,a):p p:=(ainlp)?d p(p.a):p
if (s',p’) not in seen then { if (s',p’) = start then <.
seenl :=seenl + {(s’,p)} print(“violation”,
push((s’,p’), stackl) stack1+stack?)
DFS((s',p")) if (s',p’) not in seen2 then {
if p'in F_, then { seen2 :=seen2 + {(s',p)}
seen2 = {(s’,p)} push((s’,p’), stack2)
stack2 = [(s',p)] NDFS((s’,p’), start)
NDFS((s',p), (s',p’)) pop(stack2)}
pop(stack1)} 1}

3

acceptance cycle found!
Model Checking, Part 2 20

CISC422/853, Winter 2009

CISC422/853, Winter 2009

Check Liveness With Never Claims
(Cont’'d)
= Let NC_; be NC expressing negation of liveness
property P
= 2 Steps:
1. build As®NC _p, synchronous product of Ag and NC_,

2. do nested DFS on As®NC_, to search for acceptance cycle

° S violates P iff
- Ag®NC_; has acceptance cycle
- LY(As®NC_p) not empty

Model Checking, Part 2

21

Check Liveness With LTL

Let P be an LTL formula expressing a liveness property

Build NC_; representing negation of P

Then, as before
3 Steps:

1. build NC_p, never claim representing —P
2. build A;®NC _, synchronous product of Ag and NC_,
3. do nested DFS on As®NC_ to search for acceptance cycle

° 8 violates P iff
- As®NC_; has acceptance cycle
- LY(Ag®NC_p) not empty

CISC422/853, Winter 2009 Model Checking, Part 2 22

CISC422/853, Winter 2009

Check Liveness With Progress Labels

Need to find non-progress cycles !

Remember: In Spin,

» whether or not the system makes progress
in a given state s is observable

+ np_ false in s iff at least one process is at
progress label in s

Let Progress be “every state along
every path is always eventually followed

by a progress state”

Idea: Use np_ to express Progress and Q
—Progress as LTL formulas
Which?

Model Checking, Part 2

D

@® progress state

—— non-progress cycle

23

Check Liveness With Progress Labels
(Cont’d)
= Progress = “every state along every path is
always eventually followed by a progress state”

= —Progress = “at least one state along at least
one path is never followed by a progress state

N'b

@® progress state

» InLTL using np_:
* Progress = [I<> =np_
<>[Inp_

= As Never Claim NC_pgress:

—— non-progress cycle

Model Checking, Part 2 24

* —Progress =

ﬂProgres

CISC422/853, Winter 2009

Check Liveness With Progress Labels

(Cont’'d)
= 3 Steps:
1. build NC_p, 4655, NEVET claim representing non-
progress

2. build Ag®NC_p/ogress, Synchronous product of Ag
and NCﬂProgress

3. do nested DFS on Ag®NC
non-progress cycle

° S violates Progress iff
- As®NC_ has acceptance cycle

_Progress {0 Search for

Liveness

Check Safety: In A Nutshell

Let S be system with threads T, ..., T,

liveness

Let P be safety property
Steps:

" Buechi Automaton
1. build ESA'A_; for negation of P

2. build Ag®A _p, synchronous product of Ag and

» Spin and Bogor do
both steps at same
time (“on-the-fly”)

A p where Ag = Ay || ... || Ar,, asynchronous | . smv carries steps
composition of the T, out sequentially

nested
3. do basic. DFS on As®A p

- Lv(Ag®NC_p) not empty = Complexity:
O(2:R
. D(el%i)where R is # of reachable states in
As®A 5
CISC422/853, Winter 2009 Model Checking, Part 2 25 CISC422/853, Winter 2009 Model Checking, Part 2 26
proctype A() { Spln The Language'Theoreth V|€W . @
assert (xi=13) ; = |(S): system executions -
imtm 50 { = L(P) : executions satisfying the property
Taie ¢ * Need to determine: L(S) C L(P) el
run Agf ves » Observation:ACB iff (ANn-B)=0
} / » So, to see if L(S) C L(P), we
—y « if safety, basic DFS

Promela code

« if liveness, nested DFS

Spin
“No” +
counter example
Never P
Claim
LTL Check progress
CISC422/853, Winter 2009 Model Checking, Part 2 27

+ Step 1: take —P
» Step 2: see if L(S) N L(—=P) is empty, that is, if there does not exist
an execution t such that
° Scandot, thatis, tin L(S), and
° tviolates P, that is, tis in L(—P)
» Step 2 will succeed precisely when S®—-P has no accepting
executions

= Theorem: Buechi Automata are closed under negation,

union and intersection

CISC422/853, Winter 2009 Model Checking, Part 2 28

Important Properties of Buechi-
Automata

Buechi automata are closed under complement, union,
and intersection.

Let A and B be Buechi-automata. Then,

= A denotes the automaton that accepts precisely the
words not accepted by A:

Lo(=A) = {w |we Lo(A)}
= AUB denotes the automaton that accepts precisely the
words accepted by A or by B:
Lo(AUB) = L®(A) U L*(B)
= Similarly for ANB

CISC422/853, Winter 2009 Model Checking, Part 2 29

Weak Fairness

= So far, it's possible that along a counter example a
process stops moving although it is enabled

= such counter examples are not very realistic (why?)

Definition: An w-run o satisfies the weak fairness
requirement if it contains infinitely many transitions
from every process (component automaton in the
asynchronous product) that is enabled (has an
executable action) infinitely long in o

Nested DFS can be adapted to enforce fairness (more
details in Spin book Chapter 8)

» Cost: linear increase in complexity (in # of processes)

CISC422/853, Winter 2009 Model Checking, Part 2 30

Complexity and Optimization

Size of Ag®A _p
* R =# of reachable states in A;®A
* R=Rg R ;where
° Rg = # of reachable states in Ag

(typically: 10° ... 10™")

° R_p =# of reachable states in A (typically: 1..4)
= Size of Ag
* Rg= Ry ... 'Ry ~ R{
= Sizeof T
* Ry=(#loc’sinT)-|dtype,| - ... - |dtype,| ~ (#loc’sinT)- |dtype|™
* Thus,

Rg increases with

* # of processes n (exponentially)
« # of variables m

* size of data types

* size of process

* Rg=((#loc’sin T) - |dtype|)"

CISC422/853, Winter 2009 Model Checking, Part 2

Complexity and Optimization (Cont’d)

= Size of Ag®A p
« R=Rg"R= ((#loc’sin T) - |dtype|™)n "Rp
= Reduce R by

reducing using

« # of processes n (exponentially) « partial order reduction
* # of variables m - statement merging

* size of data type dtype « abstraction

* size of process T
* size of specification P

checker/user

user

» Reduce memory requirement by
e compression

CISC422/853, Winter 2009 Model Checking, Part 2 32

CTL Model Checking Algorithm (1)

= So much for LTL model checking
= Now, on to CTL model checking

= Algorithm quite different, because CTL quite different
from LTL

CISC422/853, Winter 2009 Model Checking, Part 2

CTL Model Checking Algorithm (2)

Definition: A set of connectives S is adequate for CTL iff
for every CTL formula ¢, there exists an equivalent CTL
formula T(¢) that only contains the connectives in S

Theorem: {—, v, EX, AF, EU} is adequate for CTL
Proof: ¢,N, And —(=¢,V—9,)
G1=¢, A 0V,
AXo &~ —EX=¢
AGo ~ —-EF-o
EGo “— —-AF—-@
EFo > E[tt U o]
Alo, U)] < ~(EG—¢,V E[-9, U —9,A,])
© AF@, A =E[-0, U —¢,Ap)]

CISC422/853, Winter 2009 Model Checking, Part 2 34

CTL Model Checking Algorithm (3)

= Recall
= AGo “ o A AX AGo
= EGo “ ¢ AN EXEGo
= AFo > ¢ vV AX AFo
= EFo &~ oV EXEFo
= AlpUg)] <« ¢,V (0, AX Al U ¢,])
* Elo,Ug)] <« 9,V (oA EXE[o; U y])

CISC422/853, Winter 2009 Model Checking, Part 2

CTL Model Checking Algorithm (4)

Input: FSM M=(S, s,, L, —, F) and CTL formula ¢ over AP
Output: “yes” if ME@, “no” otherwise

Step 0: Let ¢’ be T(9)
Step 1: For all subformulas) in ¢’ (starting w/ smallest)
including ¢’, label all states s in M satisfying :
Sat(¢y) = CASE ¢ OF
p<AP : label a state s w/ pif p truein s
-’ : Sat(y); label a state s w/ — if s is not labeled w/
¥, Vib,: Sat(y,); Sat(y,); label a state s w/ ¢, V1, if s labeled w/), or v,
EX ¢': Sat(y'); label a state s w/ EX¢’ if at least one successor of s is labeled w/ ¢’
AFy": Sat(y');
Repeat
label state s w/ AF+)’ if s labeled w/ +’ or all successors of s labeled w/ AF+)’
Until labeling doesn’t change anymore, i.e., a “fixed point” is reached
E[y, U 4] : Sat(y,); Sat(y,);
Repeat
label state s w/ E[¢),U 1,] if s labeled w/ 1), or (s labeled w/ v,
and at least one successor of s labeled w/ E[¢, U 1,])
Until labeling doesn’t change anymore, i.e., a “fixed point” is reached

CISC422/853, Winter 2009 Model Checking, Part 2 36

CTL Model Checking Algorithm (5)

Input: FSM M=(S, s, L, —, F) and CTL formula ¢ over AP
Output: “yes” if ME@, “no” otherwise
Step 0: Let ¢’ be T(o)
Step 1: For all subformulas « in ¢’ (starting w/ smallest) including ¢’,
label all states s in M satisfying :
Step 2: If s, labeled with @, then output “yes”, else output “no”
Example: -
MEAF p?
“yes’

Complexity: O((|S[+[=1) - o)

CISC422/853, Winter 2009 Model Checking, Part 2 37

LTL Model Checking vs. CTL Model Checking

To check M E ¢

LTL model checking:
1) Check if L(M®A) = 0 where A_ is
non-deterministic Buechi Automaton
representing @
2) Check implemented by
a) for safety: DFS or BFS
b) for liveness: nested DFS
3) Note
a) execution sequences are linear
(non-branching)
b) transition relation of M can be
computed “on-the-fly”
c) In worst case, |A_,| exponential in |g|
4) Complexity: O(|M|- 2lel), but [M|
dominates 219l in practice
5) Sample tools: Spin, Bogor, JPF

CTL model checking:
1) Check if (M,s)E¢ for all s,cM.S
2) Check implemented by
a) express ¢ in terms of {—, v, EX, AF,
EU}
b) labeling algorithm Sat(¢) that is

inductive over structure of ¢ and
uses fixed point computation

3) Note
a) execution sequences are branching
b) transition relation of M cannot be
computed on-the-fly
4) Complexity: O(|M|- |o])
5) Sample tools: SMV

king, Part 2 38

Projects and Presentations

Schedule

= Now:

= Till week of April 6:
= Week of April 6:
Presentations

pick project
work on project
presentations & summary papers

= 20 mins

= group members take turns

Summary papers

» b/w 2-5 pages in ACM SIG Proceedings format
= to be distributed at presentation time

CISC422/853, Winter 2009 Model Checking, Part 2 39

