
Topic 8: Model Checking, Part 2

Juergen Dingel
Feb, 2009

Readings:
• Spin book: Chapter 8, pages 178-181 (Search Algorithms)
• Course notes on CTL

CISC422/853: Formal Methods
in Software Engineering:

Computer-Aided Verification

CISC422/853, Winter 2009 Model Checking, Part 2 2

Outline

How to check for
• assertion violations & deadlock

° Basic DFS

• safety properties
° expressed as FSAs (in Bogor)
° expressed as Never Claims (in Spin)
° expressed as LTL properties (in Spin)

• liveness properties
° progress labels (in Spin)
° expressed as Never Claims (in Spin)
° expressed as LTL properties (in Spin)

CISC422/853, Winter 2009 Model Checking, Part 2 3

Preliminaries

Let system S be given by n concurrent threads
T1, …, Tn

Threads Ti execute asynchronously in S
So, AS, the FSA representing S, is obtained by
building the asynchronous composition of the ATi, the
FSA representing Ti, that is,

AS = AT1 || … || ATn

CISC422/853, Winter 2009 Model Checking, Part 2 4

checkAssertions(AS) {
seen := {s0}
stack := [s0]
DFS(s0)

}

checkAssertions(AS) {
seen := {s0}
stack := [s0]
DFS(s0)

}

DFS(s) {
ws := enabled(s)
for all a in ws {

if a=assert(p) && !eval(p,s) then
print(“violation”, s+stack)

s’ := execute(a, s)
if s’ not in seen {

seen := seen + {s’}
push(s’, stack)
DFS(s’)
pop(stack)

}}}

DFS(s) {
ws := enabled(s)
for all a in ws {

if a=assert(p) && !eval(p,s) then
print(“violation”, s+stack)

s’ := execute(a, s)
if s’ not in seen {

seen := seen + {s’}
push(s’, stack)
DFS(s’)
pop(stack)

}}}

Check Safety With
Assertions

set of states already exploredset of states already explored

• get the transitions out of s (possibly
“on-the-fly”)
• s records state of each thread Ti,
i.e., s = (sT1, …, sTn)

• get the transitions out of s (possibly
“on-the-fly”)
• s records state of each thread Ti,
i.e., s = (sT1, …, sTn)

pick one of the transitions to explorepick one of the transitions to explore

calculate the successor state calculate the successor state

if successor state has been seen before,
ignore it

if successor state has been seen before,
ignore it

Source: 842@KSU

check for assertion violation, if necessarycheck for assertion violation, if necessary

states on current pathstates on current path

explore successor stateexplore successor state

Check for deadlock is similar!

CISC422/853, Winter 2009 Model Checking, Part 2 5

Check Safety With FSAs: Example

Let’s look at an example system
[Phil1 || Phil2]:

boolean f1, f2;
thread Phil1() {

loc pickup1: when !f1 do
{f1 := true;}

goto pickup2;
loc pickup2: when !f2 do

{f2 := true;}
goto eating;

loc eating: do {}
goto drop2;

loc drop2: do {f2 := false;}
goto drop1;

loc drop1: do {f1 := false;}
goto pickup1;

}

boolean f1, f2;
thread Phil1() {

loc pickup1: when !f1 do
{f1 := true;}

goto pickup2;
loc pickup2: when !f2 do

{f2 := true;}
goto eating;

loc eating: do {}
goto drop2;

loc drop2: do {f2 := false;}
goto drop1;

loc drop1: do {f1 := false;}
goto pickup1;

}
Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 2 6

Check Safety With FSAs: Example
(Cont’d)

... and an example property P1:
“Phil1 must pickup Fork1 before dropping it”

¬P1 as reg. exp.: [- P1.pickup1, P1.drop1]*; P1.drop1; .*

extension Property for ...
{expdef boolean transform(string, string);}

function notP1() {
loc init:

when Property.transform(“Phil1”, ”drop1”)
do {} goto bad;

when Property.transform(“Phil1”, ”pickup1”)
do {} goto good;

loc good do {} goto good;
loc bad do {} goto bad;

extension Property for ...
{expdef boolean transform(string, string);}

function notP1() {
loc init:

when Property.transform(“Phil1”, ”drop1”)
do {} goto bad;

when Property.transform(“Phil1”, ”pickup1”)
do {} goto good;

loc good do {} goto good;
loc bad do {} goto bad;

¬P1 as a FSA: ¬P1 as a BIR program:

Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 2 7

Check Safety With FSAs: Example
(Cont’d)

To check whether [Phil1 || Phil2] satisfies P1, we take the
synchronous composition of [Phil1 || Phil2] and ¬P1:

Every word/execution ending in (*, *, 2) is
• in L([Phil1||Phil2] ⊗ ¬P1)
• a violating execution!

[Phil1||Phil2] ⊗ ¬P1

Here:
• no violating executions
• system satisfies P1!

Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 2 8

Check Safety With FSAs: Example
(Cont’d)

Here’s another property P2

“Phil2 must pickup Fork1 before Phil1 can drop it”
¬P2 as regular expression:

[- P2.pickup1, P1.drop1]*; P1.drop1; .*
¬P2 as FSA:

[- P2.pickup1, P1.drop1]

P2.pickup1

Source: 842@KSU

CISC422/853, Winter 2009 Model Checking, Part 2 9

Check Safety With FSAs:
Example (Cont’d)

[Phil1 || Phil2] ⊗ ¬P2

Every word/execution ending in (*, *, 2) is
• in L([Phil1||Phil2] ⊗ ¬P2)
• a violating execution

Here:
• lots of violating executions
• system does not satisfy P2

Source: 842@KSU CISC422/853, Winter 2009 Model Checking, Part 2 10

Check Safety With FSAs

Let AS = AT1
|| ... || ATn

Let AP be FSA expressing safety property P
3 Steps:
1. build FSA A¬P for negation of P

° A¬P must be total (use stutter extension)
2. build AS⊗A¬P, synchronous product of AS and A¬P

3. do basic DFS on AS⊗A¬P

° if a transition puts A¬P into final state, then
qViolation! Print contents of DFS stack as error trace
qL(AS⊗A¬P) not empty

° if A¬P never reaches a final state, then
qno violation! S satisfies P
qL(AS⊗A¬P) empty

can be done at
the same time
(“on-the-fly”

model
checking, e.g.,
Spin, Bogor)

CISC422/853, Winter 2009 Model Checking, Part 2 11

DFS((s, p)) {
ws := enabled(s)
for each a in ws {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if p’ in F¬P then

print(“violation”, (s’,p’)+stack)
if (s’,p’) not in seen then {

seen := seen + {(s’,p’)}
push((s’,p’), stack)
DFS((s’,p’))
pop(stack)

}
}

}

DFS((s, p)) {
ws := enabled(s)
for each a in ws {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if p’ in F¬P then

print(“violation”, (s’,p’)+stack)
if (s’,p’) not in seen then {

seen := seen + {(s’,p’)}
push((s’,p’), stack)
DFS((s’,p’))
pop(stack)

}
}

}

Check Safety With
FSAs (Cont’d)

• Let AS be (SS, s0, S, LS, δS, FS)
• Let A ¬P be

(S¬P, s0,¬P, L¬P, δ¬P, F¬P)
where A¬P is deterministic

checkSafety(AS, A¬P) {
seen := {(s0,S, s0,¬P)}
stack := [(s0,S, s0,¬P)]
DFS((s0,S, s0,¬P))

}

checkSafety(AS, A¬P) {
seen := {(s0,S, s0,¬P)}
stack := [(s0,S, s0,¬P)]
DFS((s0,S, s0,¬P))

}

new state component
for A¬P

update state of A¬P

A¬P in final state?
CISC422/853, Winter 2009 Model Checking, Part 2 12

Check Safety With Never Claims

In Spin, safety properties can be expressed using
Never Claims
Never Claims representing safety properties are FSAs
Let NC¬P be NC expressing negation of safety
property P
Check as before, except don’t need to build negation
2 Steps:
1. build AS⊗NC¬P, synchronous product of AS and NC¬P

2. do basic DFS on AS⊗NC¬P

° final state of NC reached when NC “fully matched”
° S violates P iff L(AS⊗NC¬P) not empty

CISC422/853, Winter 2009 Model Checking, Part 2 13

DFS((s, p)) {
ws := enabled(s)
for each a in ws {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if p’ in F¬P then

print(“violation”, (s’,p’)+stack)
if (s’,p’) not in seen then {

seen := seen + {(s’,p’)}
push((s’,p’), stack)
DFS((s’,p’))
pop(stack)}

}}

DFS((s, p)) {
ws := enabled(s)
for each a in ws {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if p’ in F¬P then

print(“violation”, (s’,p’)+stack)
if (s’,p’) not in seen then {

seen := seen + {(s’,p’)}
push((s’,p’), stack)
DFS((s’,p’))
pop(stack)}

}}

Check Safety With Never Claims
(Cont’d)

• Let AS be (SS, s0, S, LS, δS, FS)
• Let NC¬P be (S¬P, s0,¬P, L¬P, δ¬P, F¬P) where NC¬P is

deterministic

checkSafety(AS, NC¬P}) {
seen := {(s0,S, s0,¬P)}
stack := [(s0,S, s0,¬P)]
DFS((s 0,S, s0,¬P))

}

checkSafety(AS, NC¬P}) {
seen := {(s0,S, s0,¬P)}
stack := [(s0,S, s0,¬P)]
DFS((s 0,S, s0,¬P))

}

NC¬P fully matched?

CISC422/853, Winter 2009 Model Checking, Part 2 14

Check Safety With LTL

In Spin, safety properties can also be expressed as
LTL properties
Let P be safety property expressed in LTL
Checking proceeds as before
3 Steps:
1. build FSA A¬P for negation of P

° A¬P must be total (use stutter extension)
2. build AS⊗A¬P, synchronous product of AS and A¬P

3. do basic DFS on AS⊗A¬P

° as before
° S violates P iff L(AS⊗A¬P) not empty

CISC422/853, Winter 2009 Model Checking, Part 2 15

Check Safety: In A Nutshell

Let S be system with threads T1, …, Tn

Let P be safety property
Steps:
1. build FSA A¬P for negation of P
2. build AS⊗A¬P, synchronous product of AS and

A¬P where AS = AT1 || … || ATn, asynchronous
composition of the Ti

3. do basic DFS on AS⊗A¬P

Complexity:
• O(R) where R is # of reachable states in

AS⊗A¬P

• Spin and Bogor do
both steps at the same
time (“on-the-fly”)
• SMV carries steps
out sequentially (not
“on-the-fly”)

CISC422/853, Winter 2009 Model Checking, Part 2 16

Check Liveness With Never Claims

Remember:
• NC expresses violation of property
• NC representing liveness property

= Buechi Automaton
= FSA + ω-acceptance

Let
• AS be Buechi automaton representing the system S
• NC¬P express violation of liveness property P
• t be execution of AS

Execution t violates P iff
• “some ‘good thing’ never happens along t”

iff t in Lω(NC¬P)
iff t causes NC¬P into an ‘acceptance cycle’

CISC422/853, Winter 2009 Model Checking, Part 2 17

Check Liveness With Never Claims
(Cont’d)

S satisfies P
iff Lω(AS⊗NC¬P) is empty
iff AS⊗NC¬P has no accepting execution
iff AS⊗NC¬P has no execution that ends in an accepting cycle

To check if S satisfies P
1. build AS⊗NC¬P

2. check if AS⊗NC¬P has acceptance cycle
° How to do that?
° Basic DFS or BFS is not enough…

1

3

4

5

2

CISC422/853, Winter 2009 Model Checking, Part 2 18

Check Liveness With Never Claims
(Cont’d)

Solution 1:
• Compute strongly connected components (SCC) in AS⊗NC¬P

(Tarjan’s algorithm)
• AS⊗NC¬P has acceptance cycle iff

° AS⊗NC¬P has SCC such that
q SCC reachable from initial state, and
q SCC contains at least one accepting state

Solution 2: (easier)
• Check if AS⊗NC¬P has at least one state s s.t.

(1) s is accepting
(2) s reachable from initial state
(3) s is reachable from itself

• Implementation: Nested DFS
° First DFS to find s s.t. (1) and (2)
° Then, nested DFS to check (3)

1

3

4

5

2

CISC422/853, Winter 2009 Model Checking, Part 2 19

DFS((s, p)) {
ws1 := enabled(s)
for each a in ws {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if (s’,p’) not in seen then {

seen1 := seen1 + {(s’,p’)}
push((s’,p’), stack1)
DFS((s’,p’))

if p’ in F¬P then {
seen2 = {(s’,p’)}
stack2 = [(s’,p’)]
NDFS((s’,p’), (s’,p’))}

pop(stack1)
}}}

DFS((s, p)) {
ws1 := enabled(s)
for each a in ws {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if (s’,p’) not in seen then {

seen1 := seen1 + {(s’,p’)}
push((s’,p’), stack1)
DFS((s’,p’))

if p’ in F¬P then {
seen2 = {(s’,p’)}
stack2 = [(s’,p’)]
NDFS((s’,p’), (s’,p’))}

pop(stack1)
}}}

Check Liveness With Never Claims
(Cont’d)

start nested DFS if p’
is an accepting state of NC¬P

checkLiveness(AS, NC¬P}) {
seen1 := {(s0,S, s0,¬P)}
stack1 := [(s0,S, s0,¬P)]
DFS((s 0,S, s0,¬P))

}

checkLiveness(AS, NC¬P}) {
seen1 := {(s0,S, s0,¬P)}
stack1 := [(s0,S, s0,¬P)]
DFS((s 0,S, s0,¬P))

}

• Let AS be (SS, s0, S, LS, δS, FS)
• Let NC¬P be

(S¬P, s0,¬P, L¬P, δ¬P, F¬P)
where NC¬P is deterministic

is p’ accepting state?

CISC422/853, Winter 2009 Model Checking, Part 2 20

NDFS((s, p), start) {
ws2 := enabled(s)
for each a in ws2 {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if (s’,p’) = start then

print(“violation”,
stack1+stack2)

if (s’,p’) not in seen2 then {
seen2 := seen2 + {(s’,p’)}
push((s’,p’), stack2)
NDFS((s’,p’), start)
pop(stack2)}

}}

NDFS((s, p), start) {
ws2 := enabled(s)
for each a in ws2 {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if (s’,p’) = start then

print(“violation”,
stack1+stack2)

if (s’,p’) not in seen2 then {
seen2 := seen2 + {(s’,p’)}
push((s’,p’), stack2)
NDFS((s’,p’), start)
pop(stack2)}

}}

Check Liveness With Never Claims
(Cont’d)

DFS((s, p)) {
ws1 := enabled(s)
for each a in ws {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if (s’,p’) not in seen then {

seen1 := seen1 + {(s’,p’)}
push((s’,p’), stack1)
DFS((s’,p’))

if p’ in F¬P then {
seen2 = {(s’,p’)}
stack2 = [(s’,p’)]
NDFS((s’,p’), (s’,p’)) }

pop(stack1)}
}}

DFS((s, p)) {
ws1 := enabled(s)
for each a in ws {

s’ := execute(a, s)
p’ := (a in L¬P) ? δ¬P(p,a) : p
if (s’,p’) not in seen then {

seen1 := seen1 + {(s’,p’)}
push((s’,p’), stack1)
DFS((s’,p’))

if p’ in F¬P then {
seen2 = {(s’,p’)}
stack2 = [(s’,p’)]
NDFS((s’,p’), (s’,p’)) }

pop(stack1)}
}}

acceptance cycle found!

CISC422/853, Winter 2009 Model Checking, Part 2 21

Check Liveness With Never Claims
(Cont’d)

Let NC¬P be NC expressing negation of liveness
property P
2 Steps:
1. build AS⊗NC¬P, synchronous product of AS and NC¬P

2. do nested DFS on AS⊗NC¬P to search for acceptance cycle
° S violates P iff
q AS⊗NC¬P has acceptance cycle
q Lω(AS⊗NC¬P) not empty

CISC422/853, Winter 2009 Model Checking, Part 2 22

Check Liveness With LTL

Let P be an LTL formula expressing a liveness property
Build NC¬P representing negation of P
Then, as before
3 Steps:
1. build NC¬P, never claim representing ¬P
2. build AS⊗NC¬P, synchronous product of AS and NC¬P

3. do nested DFS on AS⊗NC¬P to search for acceptance cycle
° S violates P iff
qAS⊗NC¬P has acceptance cycle
qLω(AS⊗NC¬P) not empty

CISC422/853, Winter 2009 Model Checking, Part 2 23

Check Liveness With Progress Labels

Need to find non-progress cycles
Remember: In Spin,
• whether or not the system makes progress

in a given state s is observable
• np_ false in s iff at least one process is at

progress label in s

Let Progress be “every state along
every path is always eventually followed
by a progress state”
Idea: Use np_ to express Progress and
¬Progress as LTL formulas
Which?

progress state

non-progress cycle

CISC422/853, Winter 2009 Model Checking, Part 2 24

Check Liveness With Progress Labels
(Cont’d)

Progress = “every state along every path is
always eventually followed by a progress state”
¬Progress = “at least one state along at least
one path is never followed by a progress state”
In LTL using np_:
• Progress = []<> ¬np_
• ¬Progress = <>[]np_

As Never Claim NC¬Progress:

progress state

non-progress cycle

np_

.
NC¬Progress

np_

CISC422/853, Winter 2009 Model Checking, Part 2 25

Check Liveness With Progress Labels
(Cont’d)

3 Steps:
1. build NC¬Progress, never claim representing non-

progress
2. build AS⊗NC¬Progress, synchronous product of AS

and NC¬Progress

3. do nested DFS on AS⊗NC¬Progress to search for
non-progress cycle
° S violates Progress iff
qAS⊗NC¬P has acceptance cycle
qLω(AS⊗NC¬P) not empty

CISC422/853, Winter 2009 Model Checking, Part 2 26

Check Safety: In A Nutshell

Let S be system with threads T1, …, Tn

Let P be safety property

Steps:
1. build FSA A¬P for negation of P

2. build AS⊗A¬P, synchronous product of AS and
A¬P where AS = AT1 || … || ATn, asynchronous
composition of the Ti

3. do basic DFS on AS⊗A¬P

Complexity:
• O(R) where R is # of reachable states in

AS⊗A¬P

• Spin and Bogor do
both steps at same
time (“on-the-fly”)
• SMV carries steps
out sequentially

liveness

Buechi Automaton

nested

O(2·R)

Liveness

CISC422/853, Winter 2009 Model Checking, Part 2 27

Spin

Promela code

Never
Claim

proctype A() {

…

assert(x!=13);

}

proctype B() {

…

init {

run A();

run B();

}

never {…}

Spin

• if safety, basic DFS
• if liveness, nested DFS

• if safety, basic DFS
• if liveness, nested DFS

“Yes”

“No” +
counter example

[] x==13 -> <>x!=13 progress: …

LTL Check progress
CISC422/853, Winter 2009 Model Checking, Part 2 28

The Language-Theoretic View
L(S) : system executions
L(P) : executions satisfying the property
Need to determine: L(S) ⊆ L(P)
Observation: A ⊆ B iff (A Å ¬B) = ∅
So, to see if L(S) ⊆ L(P), we
• Step 1: take ¬P
• Step 2: see if L(S) Å L(¬P) is empty, that is, if there does not exist

an execution t such that
° S can do t, that is, t in L(S), and
° t violates P, that is, t is in L(¬P)

• Step 2 will succeed precisely when S⊗¬P has no accepting
executions

Theorem: Buechi Automata are closed under negation,
union and intersection

L(¬P)

L(P) L(S)

L(S)

CISC422/853, Winter 2009 Model Checking, Part 2 29

Important Properties of Buechi-
Automata

Let A and B be Buechi-automata. Then,
¬A denotes the automaton that accepts precisely the
words not accepted by A:

Lω(¬A) = {w | w ∉ Lω(A)}
A∪B denotes the automaton that accepts precisely the
words accepted by A or by B:

Lω(A∪B) = Lω(A) ∪ Lω(B)
Similarly for AÅB

Buechi automata are closed under complement, union,
and intersection.

Buechi automata are closed under complement, union,
and intersection.

CISC422/853, Winter 2009 Model Checking, Part 2 30

Weak Fairness

Definition: An ω-run σ satisfies the weak fairness
requirement if it contains infinitely many transitions
from every process (component automaton in the
asynchronous product) that is enabled (has an
executable action) infinitely long in σ

Definition: An ω-run σ satisfies the weak fairness
requirement if it contains infinitely many transitions
from every process (component automaton in the
asynchronous product) that is enabled (has an
executable action) infinitely long in σ

Nested DFS can be adapted to enforce fairness (more
details in Spin book Chapter 8)
Cost: linear increase in complexity (in # of processes)

So far, it’s possible that along a counter example a
process stops moving although it is enabled

⇒ such counter examples are not very realistic (why?)

CISC422/853, Winter 2009 Model Checking, Part 2 31

Complexity and Optimization
Size of AS⊗A¬P
• R = # of reachable states in AS⊗A¬P

• R = RS· R¬P where
° RS = # of reachable states in AS (typically: 109 … 1011)
° R¬P = # of reachable states in A¬P (typically: 1..4)

Size of AS
• RS = RT1 · … · RTn ~ RT

n

Size of T
• RT = (# loc’s in T) · |dtype1| · … · |dtypem| ~ (# loc’s in T) · |dtype|m

Thus,

• RS = ((# loc’s in T) · |dtype|m)n
RS increases with
• # of processes n (exponentially)
• # of variables m
• size of data types
• size of process

RS increases with
• # of processes n (exponentially)
• # of variables m
• size of data types
• size of process

CISC422/853, Winter 2009 Model Checking, Part 2 32

Complexity and Optimization (Cont’d)
Size of AS⊗A¬P

• R = RS · R¬P = ((# loc’s in T) · |dtype|m)n · R¬P

Reduce R by

Reduce memory requirement by
• compression

reducing
• # of processes n (exponentially)
• # of variables m
• size of data type dtype
• size of process T
• size of specification P

reducing
• # of processes n (exponentially)
• # of variables m
• size of data type dtype
• size of process T
• size of specification P

using
• partial order reduction
• statement merging
• abstraction

using
• partial order reduction
• statement merging
• abstraction

user

checker/user

CISC422/853, Winter 2009 Model Checking, Part 2 33

CTL Model Checking Algorithm (1)

So much for LTL model checking
Now, on to CTL model checking
Algorithm quite different, because CTL quite different
from LTL

CISC422/853, Winter 2009 Model Checking, Part 2 34

Theorem: {¬, Ç, EX, AF, EU} is adequate for CTL
Proof: ϕ1Æϕ2 ↔ ¬(¬ϕ1Ç¬ϕ2)

ϕ1→ϕ2 ↔ ¬ϕ1 Ç ϕ2

AXϕ ↔ ¬EX¬ϕ
AGϕ ↔ ¬EF¬ϕ
EGϕ ↔ ¬AF¬ϕ
EFϕ ↔ E[tt U ϕ]
A[ϕ1 U ϕ2] ↔ ¬(EG¬ϕ2 Ç E[¬ϕ2 U ¬ϕ1Æϕ2])

↔ AFϕ2 Æ ¬E[¬ϕ2 U ¬ϕ1Æϕ2]

CTL Model Checking Algorithm (2)

Definition: A set of connectives S is adequate for CTL iff
for every CTL formula ϕ, there exists an equivalent CTL
formula T(ϕ) that only contains the connectives in S

Definition: A set of connectives S is adequate for CTL iff
for every CTL formula ϕ, there exists an equivalent CTL
formula T(ϕ) that only contains the connectives in S

CISC422/853, Winter 2009 Model Checking, Part 2 35

CTL Model Checking Algorithm (3)

AGϕ ↔ ϕ Æ AX AGϕ
EGϕ ↔ ϕ Æ EX EGϕ
AFϕ ↔ ϕ Ç AX AFϕ
EFϕ ↔ ϕ Ç EX EFϕ
A[ϕ1 U ϕ2] ↔ ϕ2Ç (ϕ1Æ AX A[ϕ1 U ϕ2])
E[ϕ1 U ϕ2] ↔ ϕ2Ç (ϕ1Æ EX E[ϕ1 U ϕ2])

AGϕ ↔ ϕ Æ AX AGϕ
EGϕ ↔ ϕ Æ EX EGϕ
AFϕ ↔ ϕ Ç AX AFϕ
EFϕ ↔ ϕ Ç EX EFϕ
A[ϕ1 U ϕ2] ↔ ϕ2Ç (ϕ1Æ AX A[ϕ1 U ϕ2])
E[ϕ1 U ϕ2] ↔ ϕ2Ç (ϕ1Æ EX E[ϕ1 U ϕ2])

Recall

CISC422/853, Winter 2009 Model Checking, Part 2 36

CTL Model Checking Algorithm (4)
Input: FSM M=(S, s0, L, →, F) and CTL formula ϕ over AP
Output: “yes” if M²ϕ, “no” otherwise
Step 0: Let ϕ’ be T(ϕ)
Step 1: For all subformulas ψ in ϕ’ (starting w/ smallest)

including ϕ’, label all states s in M satisfying ψ:
Sat(ψ) = CASE ψ OF

p∈AP : label a state s w/ p if p true in s
¬ψ’ : Sat(ψ); label a state s w/ ¬ψ if s is not labeled w/ ψ
ψ1Çψ2: Sat(ψ1); Sat(ψ2); label a state s w/ ψ1Çψ2 if s labeled w/ ψ1 or ψ2
EX ψ’: Sat(ψ’); label a state s w/ EXψ’ if at least one successor of s is labeled w/ ψ’
AFψ’: Sat(ψ’);

Repeat
label state s w/ AFψ’ if s labeled w/ ψ’ or all successors of s labeled w/ AFψ’

Until labeling doesn’t change anymore, i.e., a “fixed point” is reached
E[ψ1 U ψ2] : Sat(ψ1); Sat(ψ2);

Repeat
label state s w/ E[ψ1U ψ2] if s labeled w/ ψ2 or (s labeled w/ ψ1

and at least one successor of s labeled w/ E[ψ1 U ψ2])
Until labeling doesn’t change anymore, i.e., a “fixed point” is reached

CISC422/853, Winter 2009 Model Checking, Part 2 37

CTL Model Checking Algorithm (5)
Input: FSM M=(S, s0, L, →, F) and CTL formula ϕ over AP
Output: “yes” if M²ϕ, “no” otherwise
Step 0: Let ϕ’ be T(ϕ)
Step 1: For all subformulas ψ in ϕ’ (starting w/ smallest) including ϕ’,

label all states s in M satisfying ψ:
Step 2: If s0 labeled with ϕ, then output “yes”, else output “no”

M²AF p?
“yes”

Example:

Complexity: O((|S|+|→|) · |ϕ|)
CISC422/853, Winter 2009 Model Checking, Part 2 38

LTL Model Checking vs. CTL Model Checking

LTL model checking:
1) Check if L(M⊗A¬ϕ) = ∅ where A¬ϕ is
non-deterministic Buechi Automaton
representing ϕ

2) Check implemented by
a) for safety: DFS or BFS
b) for liveness: nested DFS

3) Note
a) execution sequences are linear

(non-branching)
b) transition relation of M can be

computed “on-the-fly”
c) In worst case, |A¬ϕ| exponential in |ϕ|

4) Complexity: O(|M|· 2|ϕ|), but |M|
dominates 2|ϕ| in practice

5) Sample tools: Spin, Bogor, JPF

LTL model checking:
1) Check if L(M⊗A¬ϕ) = ∅ where A¬ϕ is
non-deterministic Buechi Automaton
representing ϕ

2) Check implemented by
a) for safety: DFS or BFS
b) for liveness: nested DFS

3) Note
a) execution sequences are linear

(non-branching)
b) transition relation of M can be

computed “on-the-fly”
c) In worst case, |A¬ϕ| exponential in |ϕ|

4) Complexity: O(|M|· 2|ϕ|), but |M|
dominates 2|ϕ| in practice

5) Sample tools: Spin, Bogor, JPF

To check M ² ϕ

CTL model checking:
1) Check if (M,s)²ϕ for all s0∈M.S0

2) Check implemented by
a) express ϕ in terms of {¬, Ç, EX, AF,

EU}
b) labeling algorithm Sat(ϕ) that is

inductive over structure of ϕ and
uses fixed point computation

3) Note
a) execution sequences are branching
b) transition relation of M cannot be

computed on-the-fly
4) Complexity: O(|M|· |ϕ|)
5) Sample tools: SMV

CTL model checking:
1) Check if (M,s)²ϕ for all s0∈M.S0

2) Check implemented by
a) express ϕ in terms of {¬, Ç, EX, AF,

EU}
b) labeling algorithm Sat(ϕ) that is

inductive over structure of ϕ and
uses fixed point computation

3) Note
a) execution sequences are branching
b) transition relation of M cannot be

computed on-the-fly
4) Complexity: O(|M|· |ϕ|)
5) Sample tools: SMV

CISC422/853, Winter 2009 Model Checking, Part 2 39

Projects and Presentations

Schedule
Now: pick project
Till week of April 6: work on project
Week of April 6: presentations & summary papers

Presentations
20 mins
group members take turns

Summary papers
b/w 2-5 pages in ACM SIG Proceedings format
to be distributed at presentation time

